

ESTIMATION OF PATH DELAYS USING VHDL LOGIC SIMULATION
Miljana Sokolović, Faculty of Electronic Engineering, University of Niš

Dejan Maksimović, Philips Semiconductors AG, Zurich

Abstract – This paper presents a VHDL based method for
timing simulation within a VHDL logic simulator framework.
This method is reminiscent to the one published in [1, 2] and
enables the logic simulator to evaluate the longest and the
shortest path delays of all signals in the circuit with only one
run of the logic simulator. Timing simulation is performed at
simulation time t=0 at the cost of a negligible increase of
CPU time needed for the simulation. Results of the timing
simulation of the ISCAS'85 benchmark circuits with a VHDL
simulator are presented that prove that the proposed method
is extremely efficient and appropriate for interactive use in
the early phases of the design process where timing analysis
needs to be repeated as the circuit design is optimized or
refined.

1. INTRODUCTION

 Circuit operating frequency is one of the most important
user requirements to digital integrated circuit designer. The
maximum operating frequency is determined by the delay of
the longest data path in the circuit, while the minimum
duration of the clock pulse is determined by the delay of the
shortest data path in the circuit. Circuit delays are usually
being extracted with timing analysis programs [3-5]. When
timing analysis shows that timing requirements are not being
met, the designer must redesign the circuit and/or perform the
delay minimization techniques on critical paths [6]. To avoid
circuit redesign, the designer needs to carry out maximal
delay estimation as early as possible in the design process.

It is shown in [1, 2] that a versatile logic simulator can
produce an early estimation of circuit delays during the logic
verification of the design in quite acceptable CPU time. In
[2] a method is proposed that enables logic simulator to
perform timing simulation. The method evaluates the longest
path propagation delay for all signals in the circuit with only
one run of the logic simulator.

In this paper an efficient implementation of the enhanced
method in VHDL is presented. It is based on use of
composite type signals that consist of signal logic value and
needed timing data. To test the performance of the proposed
method, longest and shortest path delays in ISCAS'85
benchmark circuits are evaluated using a VHDL simulator.
The presented results prove an excellent performance of the
method.

The paper is organized as follows. In section 2 the
method proposed in [2] is described in short. Section 3 deals
with enhanced method implementation in VHDL. In section
4 experimental results are presented.

2. TIMING SIMULATION WITH LOGIC
SIMULATOR

When a digital circuit is simulated for one specific input
vector, the instant time when the first activity occurs on a
signal determines the shortest path delay to that particular
signal for the given input vector. The time instant when the
last activity occurs on a signal determines the longest path. In

order to obtain the worst-case delays of both rising and
falling signal transitions the circuit has to be simulated for all
input vectors. Therefore, 2n circuit simulations have to be
carried out, where n is the number of primary inputs. It is
obvious that this approach is not feasible when n becomes
large.

In order to evaluate the longest and the shortest path
delays to all the signals in the circuit with only one
simulation of the circuit, simultaneous simulation of the
circuit for all input vectors is necessary. To enable logic
simulators to perform such a simulation, eight additional
signal attributes need to be introduced to store the
information of the arrival of the transitions at the signal and
of the shortest and the longest path delays to the signal [2].
Having a signal named S, these four attributes are:
d1mn(S) - the shortest path delay of rising transition at S,
d0mn(S) - the shortest path delay of falling transition at S,
arr1mn(S) - rising transition of the shortest path arrival flag,
arr0mn(S) - falling transition of the shortest path arrival flag,
d1mx(S) - the longest path delay of rising transition at S,
d0mx(S) - the longest path delay of falling transition at S,
arr1mx(S) - rising transition of the longest path arrival flag,
arr0mx(S) - falling transition of the longest path arrival flag.

It is assumed that the circuit is described and simulated at
structural level of abstraction and that the minimal and
maximal delays of all building blocks for both rising and
falling edge are known. At the start of the simulation the
circuit is stimulated with both rising and falling transitions at
all primary inputs. As the transitions propagate from primary
inputs towards primary outputs, the gate delays are
accumulated along the paths. Signal attributes are accessed
from the processes in the gate models and their values are
dynamically updated. Once the circuit activity is exhausted,
the shortest and the longest path delays are available in signal
attributes d1mn, d1mx, d0mn and d0mx of each signal in the
circuit.

The timing simulation mechanism is inserted into gate
models with additional processes that monitors and updates
the values of signal attributes. For a model of two-input
NAND gate this process is represented by the pseudo code
shown in Fig. 1.

 process (a, b) {
 // update falling edge delay of signal f:
 if (arr0(a) .OR. arr0(b))
 d0(f) := MAX(d0(a),d0(b)) + tf;
 arr0(f) := 'true';
 f <= an_event; }
 // update rising edge delay of signal f:
 if (arr1(a) .AND. arr1(b)) {
 d1(f) := MAX(d1(a),d1(b)) + tr;
 arr1(f) := 'true';
 f <= an_event; }
 }

Fig. 1: Two-input AND gate model for longest path delay estimation
with logic simulator

Gate inputs are denoted a and b, gate output is denoted f,
whereas gate propagation delays for rising and falling edge at
the output f are denoted tr and tf respectively. Each falling
transition at an input of the gate results in rising transition at

Zbornik radova 49. Konferencije za ETRAN, Budva, 5-10. juna 2005, tom I
Proc. 49th ETRAN Conference, Budva, June 5-10, 2005, Vol. I

99

its output, but rising transition at an input is capable to
produce falling transition at the output only if rising
transition had previously arrived at the other gate input.
Delay model of arbitrary complexity can be applied, taking
into account input signal slopes, loading capacitances and
other parameters that influence ranges of gate delays tr and
tf. Each time a delay attribute of output signal f is changed,
an event must be scheduled to signal f with zero delay in
order to activate the processes performing the timing
simulation in the gates driven by the NAND gate.

To implement the timing simulation algorithm in logic
simulator, a generalized signal attribute modeling mechanism
is proposed in [2]. It is built in AleC++ hardware description
language – the input language of Alecsis simulator [7]. In
AleC++ user-defined signal attributes can be accessed and
updated in the processes during the simulation. The
experimental results presented in [2] show that the proposed
method is fast and appropriate for interactive use during logic
verification.

3. IMPLEMENTATION IN VHDL

Although the user-defined signal attributes are available
in VHDL [87], they cannot be accessed and updated from the
processes during the simulation. Therefore, a different
modeling mechanism is necessary for the implementation of
the timing simulation in VHDL simulator. We propose the
use of composite signals of the record type. Such a
composite signal consists of logic state and the timing
attributes arr1mn, arr1mx, arr0mn, arr0mx, d1mn, d1mx,
d0mn and d0mx. The record type DCSM_std_logic for the scalar
signals can be declared in VHDL as:
type DCSM_std_logic is record
 statemn: std_ulogic;
 d0mn: time;
 d1mn: time;
 arr0mn: boolean;
 arr1mn: boolean;
 statemx: std_ulogic;
 d0mx: time;
 d1mx: time;
 arr0mx: boolean;
 arr1mx: boolean;
end record DCSM_std_ulogic;

For the bus signals type DCSM_std_logic_vector can be
declared as:
type DCSM_std_logic_vector is array
 (natural range <>) of DCSM_std_logic;

Assuming the input and output signals of the
DCSM_std_logic type, the complete model of a two-input
NAND gate can be described in VHDL as shown in Fig. 2.
Processes labeled p1 and p2 are intended for standard logic
simulation. They model the logic function and delay function
of the NAND gate. Processes labeled p3 and p4 are intended
for the timing simulation. They monitor the timing attributes
of gate inputs inp1 and inp2 and update the timing attributes
of gate output oupt.

Note that processes p3 and p4 are sensitive to the timing
attributes of the input signals inp1 and inp2, but not to their
logic states. Similarly, process p1 and p2 are sensitive to
events on input signal states, but not to their timing attributes.
Hence, the two types of processes are independent. Logic
simulation and timing simulation can be performed
separately or simultaneously.

It is also important that the changes of the timing
attributes of the output signal outp are always scheduled with

zero delay in processes p3 and p4. If the timing simulation is
initiated at some time instant of simulation time, it will be
finished at the same time instant, since the activity related to
timing simulation is performed with no delay. We suggest
that timing simulation should be performed in initial time
instant t=0 of simulation. If no timing attribute is changed
during the simulation, timing simulation is suppressed and
the simulator performs standard logic simulation. Timing
simulation is invoked by setting the timing attributes arr1mn,
arr1mx, arr0mn and arr0mx of primary inputs to value true. If
the primary inputs are grouped into a bus signal inp, the
timing analysis can be invoked by only one concurrent signal
assignment command:
inp <= (others => ('0', 0 sec, 0 sec, true, true, '0', 0 sec, 0 sec, true, true));.

Once the simulation time advances to t>0 sec, longest and
shortest path delays of all signals in the circuit are available
and can be logged out. One additional process in the top-
level entity can be added that waits for some small time
period (for example, 1 pico second), prints the shortest and
the longest path delays to the screen or file, and then
suspends to the end of the simulation. An example of such a
process is as follows:
log: process
begin
 wait for 1 ps;
 --- print the timing analysis results
 wait;
end process log;

entity nandg is
 generic (
 tpd_hlmn : time := 0.95 ns;
 tpd_lhmn : time := 1 ns;
 tpd_hlmx : time := 0.9 ns;
 tpd_lhmx : time := 1.05 ns);
 port (out1 : out DCSM_std_logic := ('0', 0.0 sec, 0.0 sec, false,
false, '0', 0.0 sec, 0.0 sec, false, false);
 in1, in2: in DCSM_std_logic := ('0', 0.0 sec, 0.0 sec, false,
false, '0', 0.0 sec, 0.0 sec, false, false)
);
end nandg;
architecture only of nandg is
begin

---- Logic function:
 p1: process(in1.statemn, in2.statemn)
 variable val,ex_value : std_logic := '0';
 begin
 val := in1.statemn and in2.statemn;
 val := not (val);
 if val /= ex_value then
 ex_value := val;
 case val is
 when '0' =>
 out1.statemn <= val after tpd_hlmn;
 when '1' =>
 out1.statemn <= val after tpd_lhmn;
 when others =>
 end case;
 end if;
 end process p1;

p2: process(in1.statemx, in2.statemx)
 variable val,ex_value : std_logic := '0';
 begin
 val := in1.statemx and in2.statemx;
 val := not (val);
 if val /= ex_value then
 ex_value := val;
 case val is
 when '0' =>
 out1.statemx <= val after tpd_hlmx;
 when '1' =>
 out1.statemx <= val after tpd_lhmx;
 when others =>
 end case;

100

 end if;
 end process p2;

---- Timing simulation:

p3: process (in1.d0mn, in1.d1mn, in1.arr0mn, in1.arr1mn,
 in2.d0mn, in2.d1mn, in2.arr0mn, in2.arr1mn)
 begin
 if (in1.arr0mn or in2.arr0mn) then
 out1.d1mn <= min(in1.d0mn, in2.d0mn) + tpd_lhmn;
 out1.arr1mn <= true;
 end if;
 if (in1.arr1mn and in2.arr1mn) then
 out1.d0mn <= min(in1.d1mn, in2.d1mn) + tpd_hlmn;
 out1.arr0mn <= true;
 end if;
 end process p3;

 p4: process (in1.d0mx, in1.d1mx, in1.arr0mx, in1.arr1mx,
 in2.d0mx, in2.d1mx, in2.arr0mx, in2.arr1mx)
 begin
 if (in1.arr0mx or in2.arr0mx) then
 out1.d1mx <= max(in1.d0mx, in2.d0mx) + tpd_lhmx;
 out1.arr1mx <= true;
 end if;
 if (in1.arr1mx and in2.arr1mx) then
 out1.d0mx <= max(in1.d1mx,in2.d1mx) + tpd_hlmx;
 out1.arr0mx <= true;
 end if;
 end process p4;
end only;
Fig. 2: VHDL implementation of two-input AND gate model

The sequential elements are modeled in a similar manner.

For timing simulation, data inputs of sequential elements are
the ending points of the signal propagation paths, whereas
the outputs of the sequential elements are the starting points
of the signal propagation paths. That means the sequential
element must assign the value true to the timing attributes
arr1mn, arr1mx, arr0mn and arr0mx of output signals at
time t=0 and log out the timing attributes d1mn, d1mx, d0mn
and d0mx of data inputs at some time t>0.

For example, the model of a D-type flip-flop can be
described with the VHDL code shown in Fig. 3. The delay
parameters of the flip-flop are directly added to the
appropriate path delays. The propagation delays tr_ck_q and
tf_ck_q are initially assigned to timing attributes d1 and d0 of
the output q, for both shortest and longest path. The set-up
times tsu_d_ckmn and tsu_d_ckmx are added to the delay of the
path ending at data input d. The log file logfile is declared in a
package to avoid the overleaping of writes from different
instances of flip-flop dff.

entity dff is
generic(tr_ck_qmn: time := 0.85 ns;
 tf_ck_qmn: time := 0.9 ns;
 tsu_d_ckmn: time := 1.05 ns;
 tr_ck_qmx: time := 0.9 ns;
 tf_ck_qmx: time := 0.95 ns;
 tsu_d_ckmx: time := 1 ns);
 port(d,ck : DCSM_std_logic
 := ('0',0sec,0sec,false,false, '0',0sec,0sec,false,false);
 q: out TS_std_logic
 := ('0',0sec,0sec,false,false, '0',0sec,0sec,false,false));
end dff;

architecture dff_arch of dff is
begin
 --- Logic simulation:
p1: process(ck.statemn)
 variable ex_value,val: std_logic := '0';
 begin
 if rising_edge(ck.statemn) then
 val := d.statemn;
 if (ex_value /= val) then
 ex_value := val;
 case val is
 when '0' =>

 q.statemn <= '0' after tf_ck_qmn; when '1' =>
 q.statemn <= '1' after tr_ck_qmn;
 when others =>
 q.statemn <= val;
 end case;
 end if;
 end if;
 end process p1;

 p2: process(ck.statemx)
 variable ex_value,val: std_logic := '0';
 begin
 if rising_edge(ck.statemx) then
 val := d.statemx;
 if (ex_value /= val) then
 ex_value := val;
 case val is
 when '0' =>
 q.statemx <= '0' after tf_ck_qmx;
 when '1' =>
 q.statemx <= '1' after tr_ck_qmx;
 when others =>
 q.statemx <= val;
 end case;
 end if;
 end if;
 end process p2;

 ---- Timing simulation:
 q.arr1mn <= true;
 q.arr0mn <= true;
 q.d0mn <= tf_ck_qmn;
 q.d1mn <= tr_ck_qmn;
 q.arr1mx <= true;
 q.arr0mx <= true;
 q.d0mx <= tf_ck_qmx;
 q.d1mx <= tr_ck_qmx;
end only;

log_timing: process
 use std.textio.all;
 file log: text open write_mode is "DFF.delays";
 variable line_1: line;
 begin
 wait for 1 ps;
 write (line_1, outp.d0mn+tsu_d_ckmn, left, 10);
 write (line_1, outp.d0mx+tsu_d_ckmx, left, 10);
 write (line_1, outp.d1mn+tsu_d_ckmn, left, 10);
 write (line_1, outp.d1mx+tsu_d_ckmx, left, 10);
 writeline (log, line_1);
 wait;
 end process log_timing;
end architecture dff_arch;

Fig. 3: VHDL implementation of D-type flip-flop model

4. EXPERIMENTAL RESULTS

The efficiency of the proposed method is tested on
ISCAS'85 benchmark circuits [9]. They are simulated with
VHDL simulator ActiveHDL [10]. Timing simulation is
performed at t=0 seconds, the results are logged at t=1
picosecond and simulation is finished at t=2 picoseconds. To
be able to easily validate the results, for this experiment all
the gates in the ISCAS'85 circuits were first chosen to have
delays trmn=trmx=tfmn=tfmx=1ns. In such a case, the
longest path delays of rising and falling edge of each signal
are the same and match the topological level of that particular
signal expressed in nanoseconds, as shown in column D, in
Table 1. Since the gate delays are 1 nanosecond and the
simulation is stopped after only 2 picoseconds, only timing
simulation and initialisation phase of the logic simulation is
done. The results of the shortets and the longest path delays
analysis are also shown in Table 1, for the simulation of the
same circuits which gates have following delays:
tfmn=0.95ns, trmn=1ns, tfmx=0.9ns, trmx=1.05ns. For each

101

ISCAS'85 circuit, the simulation result was a list of d1 and
d0, minimal and maximal parameters of all primary output
signals. The maximal of these values is given in column Dmx,
while the minimal values are given in column Dmn of Table 1
representing the delay of the longest and the shortest paths in
the circuit.

Table 1: Results of timing and logic simulation of ISCAS'85
benchmark circuits with a VHDL simulator

Circuit
name

Number
of

signals

Number
of

 inputs

Number
of

outputs

Number
of

 gates

D
[ns]

Dfmn
 [ns]

Dfmx
 [ns]

Drmn
 [ns]

Drmx
 [ns]

c17 11 5 2 6 3 1.95 2.85 1.95 3
c432 196 36 7 160 17 1.95 16.5 1.95 16.5
c499 243 41 32 202 11 0.95 1125 1 11.4
c880 443 60 26 383 24 5.8 23.4 5.9 23.7
c1355 587 41 32 546 24 2.9 23.55 2.95 23.25
c2670 1426 233 140 1193 32 4.9 31.65 4.85 31.2
c3540 1719 50 22 1669 47 13.7 46.2 13.5 46.95
c5315 2485 178 123 2307 49 3.95 48.3 3.85 47.25
c6288 2448 32 32 2416 124 4.85 120.9 4.9 120.9
c7552 3719 207 108 3512 43 5.9 41.85 5.8 42

To estimate the additional CPU time consumed by the
timing simulation during the simulator run, the ISCAS'85
circuits are also simulated using standard logic package
ieee.std_logic_1164. Signals of type std_logic and std_logic_vector
were used in this experiment. Since timing simulation in the
first experiment is finished at t=2 picoseconds, the logic
simulation in the second experiment is also finished at t=2
picoseconds. Timing simulation does not increase
significantly the total CPU time.

5. CONCLUSION

During the design process of digital integrated circuits it
is extremely important to estimate the longest and the
shortest path delays as early as possible. Design verification
is one of the early phases in the design process. It is usually
performed using a logic simulator to verify that the circuit
meets the required logic function and a timing simulator to
verify that the circuit meets the required timing
specifications. The method proposed in this paper combines
these two tools into one by enabling the VHDL simulator to
perform the timing simulation. In this way the design process
is simplified and accelerated.

The problem of introducing of the timing simulation into
the VHDL simulator is solved by the use of signals of record
type in VHDL. Additional timing data is associated with each
signal and used only when the timing simulation is requested.
Eight timing attributes are added to each signal.

Extra memory for storing the timing attributes is
proportional to the total number of signals in the circuit. For
simulated ISCAS'85 circuits this number is less than 4000.
Even if very complex circuits with millions of signals should
be simulated, the required extra memory would be of the
order of only tens of Mbytes. Storing memory is not a critical
issue and the simulator performance should not be affected
by the memory requirements.

The experimental results also indicate that extra
simulation CPU time due to timing simulation is almost
negligible for ISCAS'85 circuits. Timing simulation affects
only the initialization phase of the simulation, whereas the

rest of the simulation flow usually takes the most of the CPU
time. The proposed method is simple for implementation and
libraries of gate models used in semi-custom design
methodologies.

REFERENCES

[1] D. M. Maksimović, V. B. Litovski, "Logic
Simulation Methods For Longest Path Delay
Estimation", IEE Proc.-Comput. Digit. Tech., Vol.
149, No. 2, March 2002.

[2] D. M. Maksimović, V. B. Litovski, "Tuning logic
simulators for timing analysis", Electronics Letters,
Vol. 35, No. 10, pp. 800-802, Stevenage, UK, May
1999.

[3] J. K. Ousterhout, "CRYSTAL: A Timing Analyzer
for NMOS VLSI Circuits", Proc. 3rd Caltech Conf.
on VLSI, pp. 57-69, March 1983.

[4] N. Jouppi, "TV: An NMOS Timing Analyzer", Proc.
3rd Caltech Conf. on VLSI, pp. 71-85, March 1983.

[5] C. Oh, M.R. Mercer, "Efficient Logic-Level Timing
Analysis Using Constraint-Guided Critical Path
Search", IEEE Trans. on VLSI Systems, Vol. 4, No.
3, September 1996, pp. 346-355.

[6] B. Hoppe, G. Neuendorf, D. Schmitt-Landsiedel, W.
Specks, "Optimization of High-Speed CMOS Logic
Circuits with Analytical Models for Signal Delay,
Chip Area, and Dynamic Power Dissipation", IEEE
Trans. CAD, Vol. 9, No. 3, pp. 236-247, March
1990.

[7] Ž. Mrčarica, D. Glozić, V. Litovski, D. Maksimović,
T. Ilić, D. Gavrilović, Alecsis 2.3 - the simulator for
circuits and systems, User's manual, Laboratory for
Electronic Design Automation (LEDA), University
of Niš, Faculty of Electronic Engineering, 1/1998,
Niš, Yugoslavia (http://leda.elfak.ni.ac.yu)

[8] IEEE-Std. 1076, 1993 Language Reference Manual

[9] E. Brglez, H. Fujiwara, "A Neutral Netlist of 10
Combinational Benchmark Circuits And a Target
Translator in FORTRAN", Int. Symp. on Circuits and
Systems, pp. 1929-1934, Kyoto, Japan, June 1985.

[10] Active-HDL, ver. 5.1, ALDEC Inc., 2003.

Sadržaj – U ovom radu predložen je metod analize
kašnjenja korišćenjem VHDL simulatora. Ovaj metod je
nadgradnja onih objavljenih u [1, 2], i omogućava
sumulatoru da odredi minimalna i maksimalna kašnjenja svih
puteva u kolu, i to izvršavanjem samo jedne simulacije u
kolu. Vremenska analiza se izvršava u trenutku t=0, i samo
neznatno produžava procesorsko vreme potrebno za
simulaciju. Da bi se verifikovala efikasnost predloženog
metoda, prikazani su i rezultati simulacije ISCAS'85
benchmark kola, korišćenjem VHDL simulatora. Ovaj metod
izuzetno je pogodan u ranim fazama procesa projektovanja
gde je potrebno ponavljati vremensku analizu uvek kada se
kolo optimizuje ili redizajnira.

PROCENA KAŠNJENJA LOGIČKOG PUTA
KORIŠĆENJEM VHDL LOGIČKE SIMULACIJE

Miljana Sokolović and Dejan Maksimović

102

