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Abstract – This paper presents a VHDL based method for 
timing simulation within a VHDL logic simulator framework. 
This method is reminiscent to the one published in [1, 2] and 
enables the logic simulator to evaluate the longest and the 
shortest path delays of all signals in the circuit with only one 
run of the logic simulator. Timing simulation is performed at 
simulation time t=0 at the cost of a negligible increase of 
CPU time needed for the simulation. Results of the timing 
simulation of the ISCAS'85 benchmark circuits with a VHDL 
simulator are presented that prove that the proposed method 
is extremely efficient and appropriate for interactive use in 
the early phases of the design process where timing analysis 
needs to be repeated as the circuit design is optimized or 
refined.  

1. INTRODUCTION 

 Circuit operating frequency is one of the most important 
user requirements to digital integrated circuit designer. The 
maximum operating frequency is determined by the delay of 
the longest data path in the circuit, while the minimum 
duration of the clock pulse is determined by the delay of the 
shortest data path in the circuit. Circuit delays are usually 
being extracted with timing analysis programs [3-5]. When 
timing analysis shows that timing requirements are not being 
met, the designer must redesign the circuit and/or perform the 
delay minimization techniques on critical paths [6]. To avoid 
circuit redesign, the designer needs to carry out maximal 
delay estimation as early as possible in the design process. 

It is shown in [1, 2] that a versatile logic simulator can 
produce an early estimation of circuit delays during the logic 
verification of the design in quite acceptable CPU time. In 
[2] a method is proposed that enables logic simulator to 
perform timing simulation. The method evaluates the longest 
path propagation delay for all signals in the circuit with only 
one run of the logic simulator.  

In this paper an efficient implementation of the enhanced 
method in VHDL is presented. It is based on use of 
composite type signals that consist of signal logic value and 
needed timing data. To test the performance of the proposed 
method, longest and shortest path delays in ISCAS'85 
benchmark circuits are evaluated using a VHDL simulator. 
The presented results prove an excellent performance of the 
method.  

The paper is organized as follows. In section 2 the 
method proposed in [2] is described in short. Section 3 deals 
with enhanced method implementation in VHDL. In section 
4 experimental results are presented. 

2. TIMING SIMULATION WITH LOGIC 
SIMULATOR 

When a digital circuit is simulated for one specific input 
vector, the instant time when the first activity occurs on a 
signal determines the shortest path delay to that particular 
signal for the given input vector. The time instant when the 
last activity occurs on a signal determines the longest path. In 

order to obtain the worst-case delays of both rising and 
falling signal transitions the circuit has to be simulated for all 
input vectors. Therefore, 2n circuit simulations have to be 
carried out, where n is the number of primary inputs. It is 
obvious that this approach is not feasible when n becomes 
large.  

In order to evaluate the longest and the shortest path 
delays to all the signals in the circuit with only one 
simulation of the circuit, simultaneous simulation of the 
circuit for all input vectors is necessary. To enable logic 
simulators to perform such a simulation, eight additional 
signal attributes need to be introduced to store the 
information of the arrival of the transitions at the signal and 
of the shortest and the longest path delays to the signal [2]. 
Having a signal named S, these four attributes are: 
d1mn(S) - the shortest path delay of rising transition at S,  
d0mn(S) - the shortest path delay of falling transition at S,  
arr1mn(S) - rising transition of the shortest path arrival flag,  
arr0mn(S) - falling transition of the shortest path arrival flag,  
d1mx(S) - the longest path delay of rising transition at S,  
d0mx(S) - the longest path delay of falling transition at S,  
arr1mx(S) - rising transition of the longest path arrival flag, 
arr0mx(S) - falling transition of the longest path arrival flag.  

It is assumed that the circuit is described and simulated at 
structural level of abstraction and that the minimal and 
maximal delays of all building blocks for both rising and 
falling edge are known. At the start of the simulation the 
circuit is stimulated with both rising and falling transitions at 
all primary inputs. As the transitions propagate from primary 
inputs towards primary outputs, the gate delays are 
accumulated along the paths. Signal attributes are accessed 
from the processes in the gate models and their values are 
dynamically updated. Once the circuit activity is exhausted, 
the shortest and the longest path delays are available in signal 
attributes d1mn, d1mx, d0mn and d0mx of each signal in the 
circuit.  

The timing simulation mechanism is inserted into gate 
models with additional processes that monitors and updates 
the values of signal attributes. For a model of two-input 
NAND gate this process is represented by the pseudo code 
shown in Fig. 1. 

  process (a, b) { 
    // update falling edge delay of signal f: 
    if (arr0(a) .OR. arr0(b)) 
      d0(f) := MAX(d0(a),d0(b)) + tf; 
      arr0(f) := 'true'; 
      f <= an_event;    } 
    // update rising edge delay of signal f: 
    if (arr1(a) .AND. arr1(b)) { 
      d1(f) := MAX(d1(a),d1(b)) + tr; 
      arr1(f) := 'true'; 
      f <= an_event;    } 
  } 

Fig. 1: Two-input AND gate model for longest path delay estimation 
with logic simulator 

Gate inputs are denoted a and b, gate output is denoted f, 
whereas gate propagation delays for rising and falling edge at 
the output f are denoted tr and tf respectively. Each falling 
transition at an input of the gate results in rising transition at 
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its output, but rising transition at an input is capable to 
produce falling transition at the output only if rising 
transition had previously arrived at the other gate input. 
Delay model of arbitrary complexity can be applied, taking 
into account input signal slopes, loading capacitances and 
other parameters that influence ranges of gate delays tr and 
tf. Each time a delay attribute of output signal f is changed, 
an event must be scheduled to signal f with zero delay in 
order to activate the processes performing the timing 
simulation in the gates driven by the NAND gate.  

To implement the timing simulation algorithm in logic 
simulator, a generalized signal attribute modeling mechanism 
is proposed in [2]. It is built in AleC++ hardware description 
language – the input language of Alecsis simulator [7]. In 
AleC++ user-defined signal attributes can be accessed and 
updated in the processes during the simulation. The 
experimental results presented in [2] show that the proposed 
method is fast and appropriate for interactive use during logic 
verification. 

3. IMPLEMENTATION IN VHDL 

Although the user-defined signal attributes are available 
in VHDL [87], they cannot be accessed and updated from the 
processes during the simulation. Therefore, a different 
modeling mechanism is necessary for the implementation of 
the timing simulation in VHDL simulator. We propose the 
use of composite signals of the record type. Such a 
composite signal consists of logic state and the timing 
attributes arr1mn, arr1mx, arr0mn, arr0mx, d1mn, d1mx, 
d0mn and d0mx. The record type DCSM_std_logic for the scalar 
signals can be declared in VHDL as: 
type DCSM_std_logic is record  
 statemn: std_ulogic;  
 d0mn: time;     
 d1mn: time;    
 arr0mn: boolean;   
 arr1mn: boolean;  
 statemx: std_ulogic;  
 d0mx: time;    
 d1mx: time;   
 arr0mx: boolean;   
 arr1mx: boolean;   
end record DCSM_std_ulogic; 
 

For the bus signals type DCSM_std_logic_vector can be 
declared as: 
type DCSM_std_logic_vector is array  
  (natural range <>) of DCSM_std_logic; 

Assuming the input and output signals of the 
DCSM_std_logic type, the complete model of a two-input 
NAND gate can be described in VHDL as shown in Fig. 2. 
Processes labeled p1 and p2 are intended for standard logic 
simulation. They model the logic function and delay function 
of the NAND gate. Processes labeled p3 and p4 are intended 
for the timing simulation. They monitor the timing attributes 
of gate inputs inp1 and inp2 and update the timing attributes 
of gate output oupt.  

Note that processes p3 and p4 are sensitive to the timing 
attributes of the input signals inp1 and inp2, but not to their 
logic states. Similarly, process p1 and p2 are sensitive to 
events on input signal states, but not to their timing attributes. 
Hence, the two types of processes are independent. Logic 
simulation and timing simulation can be performed 
separately or simultaneously.  

It is also important that the changes of the timing 
attributes of the output signal outp are always scheduled with 

zero delay in processes p3 and p4. If the timing simulation is 
initiated at some time instant of simulation time, it will be 
finished at the same time instant, since the activity related to 
timing simulation is performed with no delay. We suggest 
that timing simulation should be performed in initial time 
instant t=0 of simulation. If no timing attribute is changed 
during the simulation, timing simulation is suppressed and 
the simulator performs standard logic simulation. Timing 
simulation is invoked by setting the timing attributes arr1mn, 
arr1mx, arr0mn and arr0mx of primary inputs to value true. If 
the primary inputs are grouped into a bus signal inp, the 
timing analysis can be invoked by only one concurrent signal 
assignment command:  
inp <= (others => ('0', 0 sec, 0 sec, true, true, '0', 0 sec, 0 sec, true, true));. 

Once the simulation time advances to t>0 sec, longest and 
shortest path delays of all signals in the circuit are available 
and can be logged out. One additional process in the top-
level entity can be added that waits for some small time 
period (for example, 1 pico second), prints the shortest and 
the longest path delays to the screen or file, and then 
suspends to the end of the simulation. An example of such a 
process is as follows: 
log: process 
begin 
  wait for 1 ps; 
  --- print the timing analysis results 
  wait; 
end process log; 

 
entity nandg is 
    generic ( 
 tpd_hlmn : time := 0.95 ns; 
 tpd_lhmn : time := 1 ns; 
 tpd_hlmx : time := 0.9 ns; 
   tpd_lhmx : time := 1.05 ns); 
 port (out1 :    out DCSM_std_logic := ('0', 0.0 sec, 0.0 sec, false, 
false, '0', 0.0 sec, 0.0 sec, false, false); 
       in1, in2:  in DCSM_std_logic := ('0', 0.0 sec, 0.0 sec, false, 
false, '0', 0.0 sec, 0.0 sec, false, false) 
    );                
end nandg; 
architecture only of nandg is 
begin 
 
---- Logic function: 
    p1: process(in1.statemn, in2.statemn)    
    variable val,ex_value : std_logic := '0'; 
    begin 
        val := in1.statemn and in2.statemn; 
        val := not (val); 
        if val /= ex_value then 
          ex_value := val; 
          case val is  
            when '0' => 
                out1.statemn <= val after tpd_hlmn; 
            when '1' => 
                out1.statemn <= val after tpd_lhmn; 
            when others => 
          end case; 
        end if;   
    end process p1; 
  

p2: process(in1.statemx, in2.statemx)    
    variable val,ex_value : std_logic := '0'; 
    begin 
        val := in1.statemx and in2.statemx; 
        val := not (val); 
        if val /= ex_value then 
          ex_value := val; 
          case val is  
            when '0' => 
                out1.statemx <= val after tpd_hlmx; 
            when '1' => 
                out1.statemx <= val after tpd_lhmx; 
            when others => 
          end case; 
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        end if;   
    end process p2;  
 
---- Timing simulation:    

p3: process (in1.d0mn, in1.d1mn, in1.arr0mn, in1.arr1mn, 
              in2.d0mn, in2.d1mn, in2.arr0mn, in2.arr1mn) 
 begin 
   if (in1.arr0mn or in2.arr0mn) then 
   out1.d1mn   <= min(in1.d0mn, in2.d0mn) + tpd_lhmn; 
   out1.arr1mn <= true; 
   end if; 
   if (in1.arr1mn and in2.arr1mn) then 
   out1.d0mn   <= min(in1.d1mn, in2.d1mn) + tpd_hlmn; 
   out1.arr0mn <= true; 
   end if; 
   end process p3; 
  
    p4: process (in1.d0mx, in1.d1mx, in1.arr0mx, in1.arr1mx, 
              in2.d0mx, in2.d1mx, in2.arr0mx, in2.arr1mx) 
 begin 
   if (in1.arr0mx or in2.arr0mx) then 
   out1.d1mx   <= max(in1.d0mx, in2.d0mx) + tpd_lhmx; 
   out1.arr1mx <= true; 
   end if; 
   if (in1.arr1mx and in2.arr1mx) then 
   out1.d0mx <= max(in1.d1mx,in2.d1mx) + tpd_hlmx; 
   out1.arr0mx <= true; 
   end if; 
 end process p4; 
end only; 
Fig. 2: VHDL implementation of two-input AND gate model 

 
The sequential elements are modeled in a similar manner. 

For timing simulation, data inputs of sequential elements are 
the ending points of the signal propagation paths, whereas 
the outputs of the sequential elements are the starting points 
of the signal propagation paths. That means the sequential 
element must assign the value true to the timing attributes 
arr1mn, arr1mx, arr0mn and arr0mx of output signals at 
time t=0 and log out the timing attributes d1mn, d1mx, d0mn 
and d0mx of data inputs at some time t>0.  

For example, the model of a D-type flip-flop can be 
described with the VHDL code shown in Fig. 3. The delay 
parameters of the flip-flop are directly added to the 
appropriate path delays. The propagation delays tr_ck_q and 
tf_ck_q are initially assigned to timing attributes d1 and d0 of 
the output q, for both shortest and longest path. The set-up 
times tsu_d_ckmn and tsu_d_ckmx are added to the delay of the 
path ending at data input d. The log file logfile is declared in a 
package to avoid the overleaping of writes from different 
instances of flip-flop dff.  

entity dff is 
generic(tr_ck_qmn:  time := 0.85 ns; 
          tf_ck_qmn:  time := 0.9 ns; 
          tsu_d_ckmn: time := 1.05 ns; 
          tr_ck_qmx:  time := 0.9 ns; 
          tf_ck_qmx:  time := 0.95 ns; 
          tsu_d_ckmx: time := 1 ns); 
  port(d,ck : DCSM_std_logic  
            := ('0',0sec,0sec,false,false, '0',0sec,0sec,false,false); 
       q: out TS_std_logic  
        := ('0',0sec,0sec,false,false, '0',0sec,0sec,false,false)); 
end dff; 
 
architecture dff_arch of dff is 
begin 
  --- Logic simulation: 
p1: process(ck.statemn) 
  variable ex_value,val: std_logic := '0'; 
  begin 
    if rising_edge(ck.statemn) then 
      val := d.statemn;  
      if (ex_value /= val) then 
        ex_value := val; 
        case val is 
          when '0' => 

            q.statemn <= '0' after tf_ck_qmn;           when '1' => 
            q.statemn <= '1' after tr_ck_qmn; 
          when others => 
            q.statemn <= val; 
        end case;    
      end if; 
    end if;   
  end process p1;    
   
 p2: process(ck.statemx) 
  variable ex_value,val: std_logic := '0'; 
  begin 
    if rising_edge(ck.statemx) then 
      val := d.statemx;  
      if (ex_value /= val) then 
        ex_value := val; 
        case val is 
          when '0' => 
            q.statemx <= '0' after tf_ck_qmx; 
          when '1' => 
            q.statemx <= '1' after tr_ck_qmx; 
          when others => 
            q.statemx <= val; 
        end case;    
      end if; 
    end if;   
  end process p2; 
 
  ---- Timing simulation: 
  q.arr1mn <= true; 
  q.arr0mn <= true; 
  q.d0mn <= tf_ck_qmn; 
  q.d1mn <= tr_ck_qmn; 
  q.arr1mx <= true; 
  q.arr0mx <= true; 
  q.d0mx <= tf_ck_qmx; 
  q.d1mx <= tr_ck_qmx;  
end only; 
 
log_timing: process  
  use std.textio.all; 
  file log: text open write_mode is "DFF.delays"; 
  variable line_1: line;  
  begin   
 wait for 1 ps;    
 write (line_1, outp.d0mn+tsu_d_ckmn, left, 10); 
 write (line_1, outp.d0mx+tsu_d_ckmx, left, 10); 
 write (line_1, outp.d1mn+tsu_d_ckmn, left, 10);   
 write (line_1, outp.d1mx+tsu_d_ckmx, left, 10); 
 writeline (log, line_1); 
   wait; 
  end process log_timing; 
end architecture dff_arch; 

Fig. 3: VHDL implementation of D-type flip-flop model 

4. EXPERIMENTAL RESULTS 

The efficiency of the proposed method is tested on 
ISCAS'85 benchmark circuits [9]. They are simulated with 
VHDL simulator ActiveHDL [10]. Timing simulation is 
performed at t=0 seconds, the results are logged at t=1 
picosecond and simulation is finished at t=2 picoseconds. To 
be able to easily validate the results, for this experiment all 
the gates in the ISCAS'85 circuits were first chosen to have 
delays trmn=trmx=tfmn=tfmx=1ns. In such a case, the 
longest path delays of rising and falling edge of each signal 
are the same and match the topological level of that particular 
signal expressed in nanoseconds, as shown in column D, in 
Table 1. Since the gate delays are 1 nanosecond and the 
simulation is stopped after only 2 picoseconds, only timing 
simulation and initialisation phase of the logic simulation is 
done. The results of the shortets and the longest path delays 
analysis are also shown in Table 1, for the simulation of the 
same circuits which gates have following delays: 
tfmn=0.95ns, trmn=1ns, tfmx=0.9ns, trmx=1.05ns. For each 
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ISCAS'85 circuit, the simulation result was a list of d1 and 
d0, minimal and maximal parameters of all primary output 
signals. The maximal of these values is given in column Dmx, 
while the minimal values are given in column Dmn of Table 1 
representing the delay of the longest and the shortest paths in 
the circuit.  

Table 1: Results of timing and logic simulation of ISCAS'85 
benchmark circuits with a VHDL simulator 

Circuit 
name 

Number 
of  

signals 

Number 
of 

 inputs 

Number 
of 

outputs 

Number 
of 

 gates 

D 
[ns] 

Dfmn 
  [ns] 

Dfmx 
  [ns] 

Drmn
  [ns]

Drmx
  [ns]

c17 11 5 2 6 3 1.95 2.85 1.95 3 
c432 196 36 7 160 17 1.95 16.5 1.95 16.5 
c499 243 41 32 202 11 0.95 1125 1 11.4 
c880 443 60 26 383 24 5.8 23.4 5.9 23.7 
c1355 587 41 32 546 24 2.9 23.55 2.95 23.25
c2670 1426 233 140 1193 32 4.9 31.65 4.85 31.2 
c3540 1719 50 22 1669 47 13.7 46.2 13.5 46.95
c5315 2485 178 123 2307 49 3.95 48.3 3.85 47.25
c6288 2448 32 32 2416 124 4.85 120.9 4.9 120.9
c7552 3719 207 108 3512 43 5.9 41.85 5.8 42 

 

To estimate the additional CPU time consumed by the 
timing simulation during the simulator run, the ISCAS'85 
circuits are also simulated using standard logic package 
ieee.std_logic_1164. Signals of type std_logic and std_logic_vector 
were used in this experiment. Since timing simulation in the 
first experiment is finished at t=2 picoseconds, the logic 
simulation in the second experiment is also finished at t=2 
picoseconds. Timing simulation does not increase 
significantly the total CPU time.  

5. CONCLUSION 

During the design process of digital integrated circuits it 
is extremely important to estimate the longest and the 
shortest path delays as early as possible. Design verification 
is one of the early phases in the design process. It is usually 
performed using a logic simulator to verify that the circuit 
meets the required logic function and a timing simulator to 
verify that the circuit meets the required timing 
specifications. The method proposed in this paper combines 
these two tools into one by enabling the VHDL simulator to 
perform the timing simulation. In this way the design process 
is simplified and accelerated.  

The problem of introducing of the timing simulation into 
the VHDL simulator is solved by the use of signals of record 
type in VHDL. Additional timing data is associated with each 
signal and used only when the timing simulation is requested. 
Eight timing attributes are added to each signal.  

Extra memory for storing the timing attributes is 
proportional to the total number of signals in the circuit. For 
simulated ISCAS'85 circuits this number is less than 4000. 
Even if very complex circuits with millions of signals should 
be simulated, the required extra memory would be of the 
order of only tens of Mbytes. Storing memory is not a critical 
issue and the simulator performance should not be affected 
by the memory requirements.  

The experimental results also indicate that extra 
simulation CPU time due to timing simulation is almost 
negligible for ISCAS'85 circuits. Timing simulation affects 
only the initialization phase of the simulation, whereas the  
 
 
 

rest of the simulation flow usually takes the most of the CPU  
time. The proposed method is simple for implementation and 
libraries of gate models used in semi-custom design 
methodologies. 
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Sadržaj – U ovom radu predložen je metod analize 
kašnjenja korišćenjem VHDL simulatora. Ovaj metod je 
nadgradnja onih objavljenih u  [1, 2], i omogućava 
sumulatoru da odredi minimalna i maksimalna kašnjenja svih 
puteva u kolu, i to izvršavanjem samo jedne simulacije u 
kolu. Vremenska analiza se izvršava u trenutku t=0, i samo 
neznatno produžava procesorsko vreme potrebno za 
simulaciju. Da bi se verifikovala efikasnost predloženog 
metoda, prikazani su i rezultati simulacije ISCAS'85 
benchmark kola, korišćenjem VHDL simulatora. Ovaj metod 
izuzetno je pogodan u ranim fazama procesa projektovanja 
gde je potrebno ponavljati vremensku analizu uvek kada se 
kolo optimizuje ili redizajnira. 
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